
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 390
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Best Effort Heuristic Algorithm for Scheduling
Timely Constrained Tasks in the Cloud

 Riyadh I. Louis, Ahmed I. Saleh, Mohammed F. AL Rahmawy
 Hazem M. El-Bakry , Samir M. Abd El-razek

Abstract— The size and complexity of Cloud systems are growing more rapidly, and hence, the management of these cloud systems and
its resources is a major research area. Resource provision with respect to SLA (Service Level Agreement) is directly tied up with customer
satisfaction like providing the service with less Cost with less finshing time, for that, cost effective scheduling with real time constraints are
major challenges in adopting cloud computation. In this work we propose a t wo-stage scheduling technique for timely constrained cloud
computing services. The first stage is in charge of producing a scheduling sequence, whereas the second stage aims to dispatch tasks to
computing nodes of a cloud computing system. The two stages are independent of one another and; therefore, one can change a policy in
one stage without configuring another one. The main goal of the proposed work is to improve user satisfaction, to balance the load
efficiently and to bolster the resource utilization and provide the service with the competitive cost at the same time.

Index Terms— Cloud Computing, Real time, Scheduling, Resource Utilization.

——————————  ——————————

1 INTRODUCTION
Nowadays cloud environment is used in most of the busi-

ness organizations and educational institutions.The ultimate
definition for the cloud computing has been developed by
NIST was the cloud computing is a model for allowing con-
venient, on demand network access to a shared huge number
of configurable resources such as networks, servers, storage,
applications, and services that can be quickly provisioned and
released with minimal management effort or service supplier
communication.Cloud computing and service-oriented archi-
tectures are driving a shift toward distributed real-time sys-
tems, where the success of applications dosent depends on
only on the correctness of result but also quality-of-service
(QoS) performance (i.e., deadlines and availability) [1].A ser-
vice level agreement (SLA) is applied as a contract between
customers and service providers to accomplish this. In this
study, we focus on scheduling techniques that allocate compu-
ting resources to tasks in a way to satisfy deadline require-
ments to fulfill a specified SLA in distributed systems (e.g.,
Hadoop computing environments) [2].

In cloud computing environments, there are two important

players: cloud providers and cloud users. Providers hold enor-
mous computing resources in their large datacenters and rent
resources out to users on a per-usage basis. On the other hand,
there are users who have applications with fluctuating loads
and hire resources from providers to run their applications. In
most cases, the interaction between providers and users occur
as shown in Figure 1 [3],as we can see the user demands are
low cost with minimum finshed time for there applica-
tion,while from the cloud provider point of view he want
finsh the applications with maximum revenue by maximized
the resources utilization.

Fig 1: Cloud Usage Scenario

The cloud as a distributed system that consists of loosely

coupled computing nodes connected using a computer net-
working to achieve high performance Scheduling schemes
play an important role in distributed systems [4]. Scheduling
algorithms are divided into two categories, namely, dynamic
scheduling [5] and static scheduling [6]. To satisfy a given SLA
of timely constrained applications in the cloud, scheduling
mechanisms are responsible for ensuring that all tasks com-
plete before their deadline [7].In cloud computing, large num-
bers of users submit their tasks to the cloud broker which
transfers the request to the Cloud Service Providers (CSP) as
explained by Kwang Mong Sim [8]. CSP provides the services
transparently to the users independent of host infrastructure
through virtualization. Virtualization is a technique that logi-
cally separates the physical resource. Each logical unit of phys-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

391

IJSER © 2016
http://www.ijser.org

ical resource acts as a VM. The necessity of virtualization is to
provide hardware independency, software isolation, reduction
of energy consumption and security with increased resource
utilization [9].The tasks, if not properly scheduled in the cloud
environment, may lead to network congestion. Therefore,
more numbers of tasks are discarded due to network conges-
tion. A good scheduling algorithm should speed up the task
execution to reduce network traffic. Consequently, the user
satisfaction and the number of tasks accepted for execution
increases that will boost the revenue of the CSP and also re-
duce the local network traffic.

Timely constrained applications services are required to

satisfy a dual notion of correctness: not only must the correct
value be determined, this value must be determined at the
correct time. In hard real-time systems, certain pieces of com-
putation have deadlines associated with them, and it is imper-
ative for the correctness of the system that all such pieces of
computation complete by their deadlines. (In contrast, soft and
firm real-time systems may allow for an occasional deadline to
be missed, or for a deadline to be missed by no more than a
certain amount, etc.) This paper focuses almost exclusively
upon the scheduling of soft real-time systems in the cloud.

Once the resources are provisioned to the submitted appli-

cations (cloud), each application needs to schedule at the allo-
cated resources to perform various computation tasks. In this
context, the scheduling problem concerns matching the tasks
to the available resources for maximization of system
throughput, execution efficiency, and so on. The optimal
matching is an optimization problem with NP-complete com-
plexity. Due to the high diversity of tasks and situations, there
is no general task scheduling algorithm that can fit for all
tasks.
Classifying task scheduling methods into static scheduling
and dynamic scheduling. Static scheduling techniques are
suitable for the environments where the details of all tasks and
resources are known prior to the scheduling being performed.
On the contrary, dynamic task scheduling is performed on the
fly each time a task arrives. Dynamic scheduling techniques
are applied in the environments where task information and
resource states cannot be available in advance.

A computing system needs to run on a specific computer
processing platform. The platform may be a uniprocessor,
consisting of one processor or multiprocessor consisting of
several processors. the cloud systems use multiproces-
sors,where the individual processors may all be the same or
they may differ from one another. Multiprocessors environ-
ment can be divide into three different categories based on the
speeds of the individual processors.

• Unrelated heterogeneous multiprocessors. In these platforms,
the processing speed depends not only on the processor, but
also on the task being executed. For example, if one of the pro-
cessors is a graphics coprocessor, graphics tasks would exe-
cute at a more accelerated rate than non-graphics tasks. Each
(processor, task)-pair of an unrelated heterogeneous system

has an associated speed si,j which is the amount of work
completed when task j executes on processor i for one unit of
time.

• Uniform heterogeneous multiprocessors. In these platforms,
the processing speed depends only on the processor. Specifi-
cally, for each processor i and for all pairs of tasks j and k, we
have si,j = si,k. In these multiprocessors, we use a si to denote
the speed of the i’th processor.

• Identical multiprocessors. In these platforms, all processing
speeds are the same. In these systems, the speed is usually
normalized to one unit of work per unit of time [10].

There are two fundamental classes of multiprocessor
schedulers: global and partitioned. Under global scheduling
(illustrated in inset (a) of Figure 1), all processors serve a sin-
gle ready queue and tasks may migrate among processors. In
contrast, under partitioned scheduling (illustrated in inset (b)
of Figure 2), tasks are statically assigned to processors during
an offline phase and each processor is scheduled individually
using a uniprocessor policy [11].

Figure 2: Illustration of multiprocessor scheduling approaches

The remainder of this paper is organized as follows: section II
briefly reviews some related works. Section III comes up with
the system model. Section IV describe the proposed algorithm
while section V has the experiment example and results. Sec-
tion VI ends with some conclusions and future works.

2 RELATED WORK

This section reviews various scheduling algorithms devel-

oped to schedule the tasks depending on the type of task or
resource in a cloud environment.
The first element in tasks scheduling is the task it self and it
classified as batch tasks, transactional tasks and interactive
tasks based on their characteristics as explained by Y. Zhang,
et al. and D. Carrera, et al. [13, 14].
This research spotlights on batch task scheduling and hence
the literatures have been restricted to batch task scheduling.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

392

IJSER © 2016
http://www.ijser.org

The batch task scheduling is categorized into two types as stat-
ic and dynamic scheduling depending upon the characteristics
of scheduling. In static scheduling, the tasks, which are exe-
cuted in certain resources, are also non-preemptive. Unlike
static scheduling, the tasks are scheduled at the run time in
dynamic scheduling that supports migration and preemp-
tion.The tasks are generally classified into deadline based and
non-deadline based tasks depending upon the user input.
EDF Algorithm Deadline based tasks are scheduled using
Earliest Deadline First (EDF) algorithm to complete earliest
deadline tasks within their deadline as developed by V. Gam-
ini Abhaya, et al. [15]. EDF is a type of priority scheduling.
The tasks are prioritized based on not only deadline, but also
the arrival time, waiting time and so on. The tasks are dynam-
ically prioritized and mapped to the VMs with limited support
of migration in dynamic scheduling. The task preemption and
task migration can fritter away execution time and network
bandwidth as developed by M. Stillwell, et al. [16].
Min-Min Algorithm The scheduling objective in Min-Min is
to achieve Minimum Completion Time. The scheduling pro-
cess is done by adding all tasks to a set known as the meta
task, if the meta task not empty, the algorithm begins to calcu-
late the completion time for each task; then, the task that has
the earliest minimum execution time is taken from the set and
assigned to the corresponding resource. Then, this task is re-
moved from the metatask set. This process repeats after re-
moving this task till all tasks in meta-task are processed [17].
Max-Min Algorithm This algorithm works in a way unlike
(Min-Min)algorithm method, where it choose the task which
has the maximum execution time and assign it to the resource
has the minimum completion time [18]. Max-Min is better
than Min-Min algorithm in resource utilization [19].

 Activity Based Costing in Cloud Computing (ABC Algo-
rithm) This algorithm calculate the cost of the resource and
applies the concept of cost-based priority by calculating the
cost of each individual use of the resources and the profit of
using these resources. According to the calculations, it gives
tasks priorities and sorted in three levels; High, Medium and
Low level priority, where the tasks with highest profit have
the highest priority. If new task arrives its priority calculated
and it is assigned to the end of the appropriate level [20].

3 THE PROPOSED ALGORITHM
3.1 Characteristic of tasks

In the proposed algorithm the incoming tasks are assumed as
batch of tasks. Each tasks is aperiodic (i.e. the arrival time of
the task is not known in advance) and independent of each
other (i.e. the input of one task does not depend on the output
of other tasks) as modeled by Chenhong Zhao, et al. [21].
The incoming tasks are assumed as non-preemptive (i.e. even
if a high priority task arrives, the task in execution is not
preempted). The tasks (T) are defined as
T= {t1, t2… tn}, where n represents the number of tasks

 It is assumed that the user must specify the length (l) and the
corresponding deadline (d) of the task during submission

Ti = {li, di}; i ∈ (1, n).
 The length of the task or the size of the task is expressed as
the number of instructions required for processing the task. It
is generally defined as number of Million Instructions (MI)
required for processing the submitted task [22]. The tasks may
request either computational resources or storage resources. In
this work, it is assumed that the task request only computa-
tional resources for their execution.

3.2 Characteristics of Resources

The resources (i.e. VMs) are independent of each other. VMs
may exist either in homogeneous or in heterogeneous multi-
processor environments. The processing speed of the VMs in a
homogeneous environment is defined as

 S1=S2=…..=Sn
Here, all VMs have equal processing speed.
The processing speed of the VMs in a heterogeneous environ-
ment is defined as

 S1≠S2≠….≠Sn
So that all VMs have different processing capacity. We assume
the maximum speed (Maxs) is the highest processing speed in
resource pool.where Maxs =Max (S1,S2,….,Sn)

 3.3 Algorithm Policy

In the above scenario, a large number of users submit their
tasks in the cloud. Among them, some may request more pro-
cessing speed than the available processing speed of the VM
that may affect the subsequent tasks. These tasks are filtered to
reduce the number of tasks violating their deadline and also to
increase the performance of the system or to find another VM
with higher speed capable of satisfying the deadline. Every
task contains two attributes namely length and deadline dur-
ing its submission. The scheduler can effectively schedule and
complete the tasks within their deadline by prioritizing the
tasks. The priority scheduler can calculate the priority value
based on different parameters like waiting time of the task,
length of the task and deadline of the submitted tasks. It does
not focus on resource utilization and previous workload. The
priority scheduler can efficiently schedule the tasks to the un-
derlying VM so that it can reduce the waiting time (Wt) of the
tasks. It may also increase the throughput (Tp) of the system.
The relationship between waiting time, throughput and re-
source utilization (Ru) are described below:

Tp α Ru

And

Tp α 1/ Wt

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

393

IJSER © 2016
http://www.ijser.org

This work proposes an Adaptive Two-Stage Scheduling Sys-
tem, see figure 3 that filters, prioritizes and maps the task to a
suitable VM. The first stage is in charge of producing a sched-
uling sequence, whereas the second stage aims to dispatch
feasible tasks to computing nodes of a distributed system. The
proposed work aims to improve system performance and re-
source utilization.

Fig 3: Decomposing an entire scheduling mechanism into two dis-

tinct Stages.

4. DESIGN OF ADAPTIVE TWO-STAGE SCHEDULING
TECHNIQUE

The tasks are submitted from various users with different
demand and the tasks are assumed to need only computing
resources for their execution. The submitted tasks are
congregated to the Cloud User Interface (i.e. Portal). The min-
imum processing speed required by the task is dynamically
estimated depending on the user input. Sometimes, the task
may require more processing speed than the available pro-
cessing speed of the resource. In this work, the tasks are ac-
cepted only if it can adapt and complete within deadline using
the available processing speed of the VM and eliminate the
task that require more processing speed than the available
processing speed of the resource.
The algorithm comprises of two components for scheduling
the tasks in multilevel manner.In the first stage, preprocessing
and filtering are done to exlude the tasks that require more
processing speed than the available processing speed of the
VM. These tasks are handed over to the deadline reassign-
ment, while the accepted tasks assigns priority dynamically.
The prioritized tasks are then passed to the next level of the
algorithm. In the second level, tasks are maped dynamically to
suitable resources to complete its execution within deadline
and normal cost. Moreover, the algorithm also balances the
system load. After resource allocation.

4.1 Preprocessing tasks

The VM exists either in homogeneous or heterogeneous en-
vironment depending on the data center policy. And there are
two functions such as either accepted or rejected for tasks are
carried out, the tasks processed are considered as a Bernoulli
distribution (i.e. Acceptance is treated as success and rejection
is treated as a failure) as each task has two possible outcomes
and independent of each other. The minimum processing
speed or computation speed required for the submitted task
can be represented as Smin and can be calculated as shown in
equation (1)

Smin = 𝒍𝒕
𝒅𝒕

 ……….. (1)
𝒍𝒕 And 𝒅𝒕 stand for the length and deadline of the task.

The processing speed of the VM is expressed in MIPS (Million
Instructions per Second).The maximum processing speed of
existing VM is represented as Maxs.

Homogeneous Envirnment

S1=S2=…..=Sn speed of homogeneous environment

Max speed Maxs= s1=s2=…= sn and

In Heterogeneous Envirnment

S1≠S2≠….≠Sn speed of heterogeneous environment

Max speed Maxs= max(s)

The tasks are feasible by comparing Smin and Maxs only if
Smin ≤ Maxs

We put feasible tasks in queue Q1. Otherwise, the tasks are
rejected and passed to deadline reassignment which rescheud-
ling tasks on other VM(s) or even other cloud.
The total processing speed of the reserved VM(s) is denoted as
St and is calculated as in equation (2).

St=∑ 𝑺𝒊𝒏

𝒊=𝟏 (2) ; where n=no. of processors in the
reserved VM(s).

The tasks are preprocessed based on the minimumTime Re-
quired for Processing already accepted tasks (TRP) in a queue
Q1 and it is computed as given in eqution (3).

TRP=∑ 𝒍𝒕𝒏𝟏
𝒕=𝟏
𝒔𝒕

 …..(3); where n1 no. of tasks in queue Q1

Then we calculate the average time required for processing
single task AVG as in eqution (4).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

394

IJSER © 2016
http://www.ijser.org

-1

AVG=TRP/n1 (4)

We compare AVG and the deadline of task and If

 AVG ≤ dt

Then we put the task in new queue Q2. Otherwise the task

is rejected and and passed to deadline reassignment.

The Utilization of the data center
The utilization can be calculated as in eqution (5).

U=
∑ 𝒍𝒊

𝒅𝒊
𝒏𝟐
𝒊=𝟏

𝑺𝒕∗𝑹
 …..(5); where n2 no. of tasks in queue Q2

 R no. of resource

If U ≤ 1 then the tasks in Q2 can be processed otherwise the
tasks are forwarded to another data center.

4.2 Priority Assignment
The priority value of the tasks stored in the Q2 priority

queue is calculated based on different parameters like length
of the submitted task, deadline of the task, waiting time of
already
accepted task and the maximum computational speed of VM.
The optimistic average computation time for processing the
current task is represented as TCt. It is computed based on
different parameters like length of the task and processing
speed of the VM as shown in equation (6).

TCt = 𝒍𝒕 + 𝒍𝒕−𝟏
𝑴𝒂𝒙𝒔

 ……. (6)

Then we calculate the priority (Pt) as in eqution (7).
Pt = �

� 𝒍𝒕
𝒅𝒕−𝐓𝐂𝐭

�

𝑴𝒂𝒙𝒔
� …… (7)

The VM with maximum processing speed is taken into the

account instead of checking with every VM because, if the VM
with maximum processing speed cannot complete the task
within deadline, then no other VM is capable to complete the
tasks within deadline. The tasks are sorted and stored in a
queue (Qfinal) based on their priority value. The task with the
lowest priority value is given the highest preference and it
remains in the head of the queue.The prioritized tasks are
passed to the second stage. The overall first stage of the algo-
rithm can be represent by the pseudo code below:

Step1: for all resource in resource pool DO

 Calculate Maxs

 Calculate St from equation (2)

 End for

Step2: for all tasks in batch queue Do

 Calculate Smin from equation (1)

 Compare Smin and Maxs

 If Smin less than Maxs

 Put task in queue Q1

 Else

 Forword task to deadline reassignment

 End if

 End for

Step3: for all tasks in queue Q1 DO

 Calculate TRP from equation (3)

 Calculate AVG from equation (4)

 Compare AVG and dt

 If AVG less than dt

 Put task in queue Q2

 Else

 Forword task to deadline reassignment

 End if

 End for

Step4: for all tasks in Queue Q2 DO

 Calculate TCt from equation (6)

 Calculate priority Pt from equation (7)

 End for

Step5: put all tasks in Q2 in Qfinal with its priority

Step6: Sort all tasks in Qfinal by priority in Ascending

4.3 Dispatching tasks (Stage Two)

Resource management includes scheduling of tasks and re-
source reutilization in order to complete all tasks on time. As
users demands can increase at any time in a cloud environ-
ment so there will be a need for a smart and efficient algo-
rithm in order to manage all the resources so that customer’s

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

395

IJSER © 2016
http://www.ijser.org

requirements can be fulfilled. Profit can increase only by man-
aging the resources from a provider’s point of view. The user
will take service from the provider who will charge him least
among all providers for the same service.

Most of the traditional scheduling algorithms in cloud
computing don’t make any consideration for the task’s cost,
where the task is assigned to any available resource as soon as
it arrives. This makes small problems such as “over-costed”
and/or “over-priced” cloud services in case of high volume
simple tasks and “under-costed” and/or “under-priced” in
low volume complex ones. To beat these problems we pro-
posed algorithm aims not only to the minimization of the ser-
vices completion time and maximizing the resource utilization
, in order to enable the provider to provide the best and most
efficient services with accepted competitive prices.

To calculate the cost of tasks we use eqution (8).

Cost= ∑ 𝒋𝟏 Rj * cost of Rj … (8); where j is no. of re-

sources

Once the task’s priority is calculated, the task is sent to the

appropriate resource in the scheduler, where the algorithm,
dispatced the task(s) which has/have the highest calculated
priority and longest length, to the resource(s) which has the
minimum completion time to make the resource(s) run in
smallest time to a void missing the deadline of the task(s) and
to reduce the cost as explained in pseudo code next in details:

Step 1: For all available resources in resources pool DO

 Sort resources by speed in Descending

 End for

Step 2: For all tasks in queue Qfinal DO

 Dispatch tasks by number of resources

 Sort these tasks by length in Descending

 Map each task with the resource of equal Sequence

 End for

Step 3: For all resources DO

 Calc cost from equation (8)

 End for

5 RESULTS
In order to evalute our algorithm, we built a program using

Matlab because its easy to deal with matrices and in our algo-
rithm all queues are matrices.Here, we present example that
illustrate its work and we used a matrix as a performance
measurment in order to evaluate the performance of the algo-

rithm and to compare it with some of the traditional cloud
scheduling algorithms

5.1 Performance Measurment
Depending on what scheduling performance is desired in

the cloud, there exist different performance metrics for evalu-
ating different scheduling algorithms. Here, the results are
evaluated on the basis of Makespan performance measure-
ment.

- Makespan: it is the time difference between the start and
finish of the sequence of tasks. It can be calculated using the
equation
Makespan = max (Tcompi); where Tcompi is the completion
time of task (i).

5.2 Example
The aim of this example is to illustrate the basic functionali-

ty of the proposed algorithm. In this example, it is assumed
that there is a cloud environment with two resources R1, R2.
The processing speed of these resources and the cost of rent
are shown in Table 1.

Table 1. Specification of the Resources

Also, assume we have a batch of ten tasks T1, T2..., T10,

and the cloud manager is supposed to schedule all the tasks
on the two available resources R1 and R2. Table 2 represents
the size details of both the instructions and data for all the
tasks T1 to T10.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

396

IJSER © 2016
http://www.ijser.org

Table 2. Specification of the Tasks

After we applied our algorithm on these tasks we get result
of first stage of our scheduling algorithm as shown in table 3.

Table 3. Stage one results

And for stage two result table 4 shows the mapping of tasks to
the resources

Table 4. Stage two tasks mapping with resources

And for more detail we used Gantt chart to show the execu-

tion of tasks in the mapped resource as in figure 6.

 Fig 6. Execution of tasks

We make comparison with traditional algorithm like Ear-

list Deadline First with First Fit (EDF-FF) And Earlist Dead-
line First with Best Fit (EDF-BF) and the gantt chart of results
is shown in figure 7 and 8 in Hetrogeneous and Homogeneous
respectivley.

In Homogeneous environment we use:

R1=R2=1000 MIPS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

397

IJSER © 2016
http://www.ijser.org

Fig 7. Gantt chart of our algorithm and EDF-FF and EDF-BF in heteroge-
neous environment

Fig 8. Gantt chart of our algorithm and EDF-FF and EDF-BF in homoge-
neous enviroment

And also we make comparison with Max-Min and Min-Min

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

398

IJSER © 2016
http://www.ijser.org

algorithms and the results are in figure 9 and 10 in Hetrogene-
ous and Homogeneous respectivley.

Fig 9. Gantt chart of our algorithm and Max-Min and Min-Min in heteroge-
neous enviroment

Fig 10. Gantt chart of our algorithm and Max-Min and Min-Min homogene-
ous enviroment

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

399

IJSER © 2016
http://www.ijser.org

And the overall heterogeneous environment makespan results
is shown in figure 11.

Fig 11. Makespan result in hetrogeneous environment

And for homogeneous environment makespan results is in
figure 12

Fig 12. Makespan result in homogeneous environment

And for cost results in heterogeneous and homogeneous environment the
result are shown in figure 13 and 14 respectively.

Fig 13. Cost results in homogeneous environment

Fig14. Cost results in hetrogeneous environment

6. CONCLUSION AND FUTURE WORK
The proposed research work examined the difficulties of batch
task scheduling. The objectives of this work were to bolster the
user satisfaction, to mitigate task violating its policy, to max-
imize resource utilization and consider the cost as important
value. To achieve these objectives, our algorithm has been
proposed for scheduling the batch tasks. The user satisfaction
was achieved by neglecting the task that doesn’t satisfy some
condition. The number of tasks violating their deadline was
reduced by filtering the tasks using multiple criteria. The pri-
ority was dynamically assigned to the accepted tasks in order
to make good load balance. The prioritized tasks were effi-
ciently mapped with VM either in homogeneous or in the het-
erogeneous environment and thereby efficiently balanced the
load. The VM Scheduler has been deployed effectively sched-
uling the tasks. Our algorithm outperforms the existing
scheduling algorithms by reducing the number of tasks violat-
ing their deadline that improves the user satisfaction. It also
focused on load balancing that increases throughput and also
resource utilization. In future, the work can be extended to
develop an efficient cost and energy aware scheduler for pro-
cessing both dependent and independent tasks.

ACKNOWLEDGMENT
I would like to thank Ministry of Science and Technology in
Iraq for funding my M.Sc. study.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 2, February 2016
ISSN 2229-5518

400

IJSER © 2016
http://www.ijser.org

REFERENCES
[1] D. Bruneo, S. Distefano, F. Longo, and M. Scarpa. Stochastic evaluation
of qos in service-based systems. Parallel and Distributed Systems, IEEE
Transactions on, 24(10):2090–2099, Oct 2013.
[2] A. Verma, L. Cherkasova, and R.H. Campbell. Orchestrating an ensemble of
mapreduce tasks for minimizing their makespan. Dependable and
Secure Computing, IEEE Transactions on, 10(5):314–327, Sept 2013.
[3] Gunho Lee, Resource Allocation and Scheduling in Heterogeneous Cloud
Environments, Spring 2012
 [4] X. Tang, K. Li, Z. Zeng, and B. Veeravalli. A novel security-driven
scheduling algorithm for precedence-constrained tasks in heterogeneous
distributed systems. Computers, IEEE Transactions on, 60(7):1017–
1029, July 2011.
[5] P. Choudhury, P.P. Chakrabarti, and R. Kumar. Online scheduling of
dynamic task graphs with communication and contention for multiprocessors.
Parallel and Distributed Systems, IEEE Transactions on,
23(1):126–133, Jan 2012.
[6] P. Cichowski and J. Keller. Efficient and fault-tolerant static scheduling
for grids. In Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2013 IEEE 27th International, pages 1439–
1448, May 2013.
[7] T. Xie, X. Qin, and A. Sung. Sarec: a security-aware scheduling strategy
for real-time applications on clusters. In Parallel Processing, 2005. ICPP
2005. International Conference on, pages 5–12, June 2005.
[8] K. M. Sim, “Agent-Based Cloud Computing,” IEEE Transactions on Services
Computing,vol.5,no.4,pp.564-577,2012.
[9] Li. Chunxiao, A. Raghunathan and Niraj K. Jha, “A Trusted Virtual Machine
in an Untrusted Management Environment”, IEEE Transactions on Services
Computing, vol. 5, no.4,pp.472-483,2012
 [10] Shelby Hyatt Funk, EDF Scheduling on Heterogeneous Multiprocessors,
Chapel Hill 2004
[11] Bjorn B. Brandenburg, SCHEDULING AND LOCKING IN MULTIPRO-
CESSOR REAL-TIME OPERATING SYSTEMS, Chapel Hill 2011
 [13] Y. Zhang, H. Franke, et al., “An integrated approach to parallel scheduling
using gang-scheduling, backfilling, and migration,” IEEE Transactions on Parallel
and Distributed Systems, vol. 14, no. 3, pp. 236-247, 2003
[14] D. Carrera, M. Steinder, et al., “Autonomic Placement of Mixed Batch and
Transactional Workloads,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 23, no. 2, pp. 219-231, 2012.
[15] V. Gamini Abhaya, Z. Tari, et al., “Performance Analysis of EDF Scheduling
in a Multi-Priority Preemptive M/G/1 Queue,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 8, pp. 2149-2158, 2014.
[16] M. Stillwell, F. Vivien and H. casanova, “Dynamic Fractional Resource
Scheduling versus Batch Scheduling,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 23, no. 3, pp. 521-529, 2012.
 [17] Etminani, K., Naghibzadeh, M.: A Weighted Mean Time Min-Min Max-Min
Selective Scheduling Strategy for Independent Tasks on Grid. In Proceedings of
the 2nd International Advance Computing Conference (IACC), IEEE Computer
Society, Patiala, India, 4-9. (2010)
[18] Cao, Q., Wei. Z., Gong, W. M.: An Optimized Algorithm for Task Schedul-
ing Based On Activity Based Costing in Cloud Computing. In Proceedings of the
3rd International Conference Bioinformatics and Biomedical Engineering (IC-
BBE). IEEE Computer Society, Beijing, China, 1-3. (2009).
[19] Sarada, N. S.: Enhanced Ant Colony System Based On RASA Algorithm In
Grid Scheduling.International Journal of Computer Science and Information
Technologies, Vol. 2. No.4, 1659-1674, 2011.
[20] Naseem, Mohammed: A Scheduling Algorithm to Enhance the Performance
and the Cost of Cloud Services. Computer Engineering and Intelligent Systems,
Vol.6, No.8, 2015
[21] C. Zhao, S. Zhang, et al., “Independent Tasks Scheduling Based on Genetic
Algorithm in Cloud Computing,” International Conference on Wireless Commu-
nications, Networking and Mobile
Computing, pp. 1-4, 2009.
[22] M. Kuanr, P. Mohanty, S. C. Moharana, “Grouping-Based Task Scheduling
in Cloud computing using Ant Colony Framework,” International Journal of
Engineering Research and Applications, 2013.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 The Proposed Algorithm
	3.1 Characteristic of tasks
	3.2 Characteristics of Resources
	3.3 Algorithm Policy

	4. Design of Adaptive Two-Stage Scheduling Technique
	4.1 Preprocessing tasks
	4.2 Priority Assignment
	4.3 Dispatching tasks (Stage Two)

	5 Results
	5.1 Performance Measurment
	5.2 Example

	6. Conclusion and future work
	Acknowledgment
	References

